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Abstract

Single-degree-of-freedom resonators consisting of honeycomb cells covered by

perforated facesheets are widely used as acoustic noise suppression liners in aircraft engine

ducts. The acoustic resistance and mass reactance of such liners is known to vary with the

intensity of the sound incident upon the panel. Since the pressure drop across a perforated

liner facesheet increases quadratically with the flow velocity through the facesheet, this is

known as the nonlinear resistance effect. In the past, two different empirical frequency

domain models have been used to predict the Sound Pressure Level effect of the incident

wave on the perforated liner impedance, one that uses the incident particle velocity in

isolated narrowbands, and one that models the particle velocity as the overall velocity. In

the absence of grazing flow, neither frequency domain model is entirely accurate in

predicting the nonlinear effect that is measured for typical perforated sheets. The time

domain model is developed in an attempt to understand and improve the model for the

effect of spectral shape and amplitude of multi-frequency incident sound pressure on the

liner impedance. This is of particular concern with regard to frequency-scaling of acoustic

treatment, since the possibility exists that the nonlinear resistance and mass reactance

effects may be significant compared to the grazing flow effects at high frequencies. A

computer code for the time-domain finite difference model is developed and predictions

using the models are compared to current frequency-domain models.

iii





Table of Contents

1. General Theory ............................................................................................................ 1

1.1. Introduction .......................................................................................................... 1

1.1.1. Background .......................................................................................... 1

1.1.2. Objectives ............................................................................................ 2

1.1.3. Historical Background .......................................................................... 3

1.1.4. Assumptions ......................................................................................... 4

1.2. Description of Acoustic Model ............................................................................. 4

1.2.1. Model Geometry .................................................................................. 4

1.3. Acoustic Wave Equation for Particle Displacement ............................................... 5

1.4. Boundary Condition for Perforated Sheet and Cavity ............................................ 6

1.5. Time Scale Transformation and Numerical Stability .............................................. 7

1.6. Calculation Scheme and Output ............................................................................ 8

2. Finite Difference Equation Formulation - Linear Form ............................................... 11

2.1. Central Difference Formulation for the Partial Differential Equation .................... 11

2.2. Central Difference Formulation for the Boundary Conditions .............................. 12

2.3. Initial Conditions ................................................................................................ 13

2.4. Step-Up and Step-Across Algorithms ................................................................. 14

2.5. Starting the Numerical Integration ...................................................................... 15

3. Incorporation of the Nonlinearity in the Boundary Condition ..................................... 16

3.1. Boundary Condition Equation ............................................................................. 16

3.2. Finite Difference Formulation .............................................................................. 16

3.3. Nonlinear Velocity Iteration Algorithm ............................................................... 17

4. Numerical Integration Computer Program Operation ................................................. 18

4.1. Computer Program ............................................................................................. 18

4.2. Program Limitations ........................................................................................... 18
4.3. Time Constants ................................................................................................... 19

4.3.1. Numerical Integration Time Step ........................................................ 19

4.3.2. Transient Decay Time ......................................................................... 19

4.4. Spectral Analysis ................................................................................................ 20

4.4.1. Data Sampling .................................................................................... 20

4.4.2. Computation of Acoustic Pressure, Velocity, and Impedance .............. 22

4.5. ZORF4 Program NAMELIST Input Guide ......................................................... 24

4.6. Sample Case ....................................................................................................... 26

4.7. Check for Transient Decay .................................................................................. 30

5. Comparison of Time-Domain Prediction to Frequency-Domain Models ..................... 32

5.1. Relation of Parameters to Current Impedance Models ......................................... 32

5.2. Comparison of Time-Domain and Frequency-Domain Predictions ....................... 34

5.2.1. Multiple-Frequency Nonlinear Sample Case ........................................ 34

5.2.2. Linearized Multiple-Frequency Sample Case ....................................... 35

6. Comparison of Predicted and Measured Impedance ................................................... 36

6.1. Single-Frequency Pressure Excitation ................................................................. 36

6.2. Multiple-Frequency Pressure Excitation .............................................................. 37



7. Recommendationsfor FurtherResearch ..................................................................... 39

8. Nomenclature ............................................................................................................ 40

9. References ................................................................................................................. 42

vi



Numerical Simulation of the Nonlinear Acoustic Impedance of

a Perforated Plate Single-Degree-of-Freedom Resonator

Using a Time-Domain Finite Difference Method

1. General Theory

1.1. Introduction

1.1.1. Background

Single-degree-of-freedom (SDOF) resonators consisting of thin-walled honeycomb tubular

cells covered by a porous faceplate are the simplest form of acoustic lining in use as noise

suppression treatment in aircratt engine ducts. Figure 1 shows the typical construction of an

SDOF treatment panel, for which the significant parameters are the cavity depth, L, the faceplate

thickness, t, the orifice hole diameter, d, and the faceplate open area ratio, or porosity, a. The

design of SDOF liners consists of determining the particular combination of parameters that

provides the best suppression performance under the design constraints.

_ PERFORATED

HONEYCOMB _-_.l I II I I11_//

Figure 1. Typical construction of SDOF treatment panel.

The design is complicated by the fact that SDOF liners covered by perforated orifice

sheets behave nonlinearly, that is, their acoustic impedance is a function of the Sound Pressure

Level (SPL) of the sound wave incident on the surface. This nonlinear behavior arises due to the

resistance to flow through an orifice, which is such that the pressure drop across the orifice is a

quadratic function of the DC flow velocity through the orifice:



Ap=A.U+B.U 2 (1)

where A and B are constants that will be specified later and U is the through-flow velocity

incident on the facesheet. The acoustic resistance of the resonator, which is the complex ratio of

incident acoustic pressure to acoustic velocity at the surface of the liner, thus depends on the

acoustic velocity, which in turn depends on the response of the liner, which is initially unknown.

An iteration must be performed on the acoustic velocity to determine the acoustic impedance.

Fortunately, this iteration generally converges quite rapidly.

The acoustic impedance of SDOF perforated plate resonators is usually predicted using

frequency-domain models in closed form, with the exception of the velocity iteration 1. It has been

found that the impedance at a given frequency depends not only on the acoustic velocity in a

narrowband frequency range surrounding the frequency, but also on contributions from acoustic

velocities at other frequencies. Two empirical models currently exist to determine the acoustic

velocity to be used at each frequency, and the two models are at opposite extremes. The first

model uses the acoustic velocity in a narrowband around the frequency of calculation, so that the

acoustic SPL applied is the pressure attributed to that narrowband range. The other model uses

the square root of the overall sum of acoustic velocities for the entire pressure spectral range,

(2)

where n is the index for the frequency of calculation and N_ is the total number of frequencies.

The narrowband velocity assumption tends to underpredict the resistance, but the overall velocity

assumption, which is the more accurate, still tends generally to obscure the finer variations in

resistance due to pressure spectrum shape.

Although the frequency-domain models account for the resistance nonlinearity and are

efficient to apply, they omit an important part of the physical process. The nonlinearity in

damping causes the acoustic velocity at the faceplate to become non-sinusoidal, thus scattering

energy into higher harmonics of frequency. This energy scattered from lower to higher

frequencies will have an effect on the impedance at higher frequencies. To properly account for

this energy scatter requires a time-domain model. This may be particularly important at very high

frequencies for scale model treatment panels.

1.1.2. Objectives

The objective of this study is to develop a numerical time-domain model that simulates the

nonlinear impedance effects of an SDOF resonator consisting of a perforated plate over a finite

depth cavity. Since acoustic impedance is fundamentally a frequency-domain quantity, the model

converts the acoustic pressure and velocity solution from the time domain to the frequency

domain to predict the acoustic impedance over a range of frequencies, given an input SPL



spectrum. Thepurposeof this reportis to documenttheanalysis,providea guide to use of the

computer program, and make a limited preliminary model assessment by comparing time-domain

predictions, frequency-domain predictions, and measured data.

The computer impedance prediction model in its current form must be considered to be a

preliminary version. For increased utility, it will be possible to include more advanced models of

the velocity or displacement dependence of the orifice end effects, the effects of grazing flow on

the nonlinear impedance, and the time-dependent effects on the linear resistance term. The

program will allow computer experiments with various assumptions regarding the physical

parameters. In particular, it is hoped that the model will allow investigation of effects of

frequency scaling, that is, behavior at low Reynolds's numbers and high frequencies.

1.1.3. Historical Background

Several researchers have considered the solution to the acoustic properties of a perforated

plate from a numerical integration point of view. Rice 2 was one of the first to analyze the

nonlinear behavior of a perforated sheet liner using a time-domain numerical integration approach.

In his paper, Rice develops a nonlinear resistance model for the effect of multiple frequency

excitation. The method also includes the effect of steady grazing flow and a high frequency, small

displacement effect. Rice remarks on the difficulty of including an accurate model for the linear

resistance term, which is frequency-dependent, and develops an approximate formulation, but

notes that generally the contribution of the linear resistance term is small in the presence of

grazing flow for conventional perforates. Rice models a finite depth cavity using a four-element

lumped mass reactance and stiffness reactance model, which allows the cavity response to be

approximated using transmission line theory rather than using an actual finite difference solution.

Cummings 3 developed a one-dimensional numerical time-domain model to simulate the

nonlinear resistance of a perforated plate. Cummings' models allow several different termination

conditions on the right side of the faceplate: an infmite tube (pc termination); an infinite baffle

termination; or a small volume Helmholtz resonator termination (maximum cavity dimension

much less than a wavelength). These choices of geometry reduce the (nonlinear) integration to an

integration in time only, eliminating the need for a spatial numerical integration in the spatial

region to the right of the faceplate.

Cummings was interested primarily in determining the acoustic transmission loss through

the perforated plate, as opposed to the impedance at the facesheet. He considers primarily

transient pressure excitation (tone bursts and pulses). His numerical results show excellent

agreement with experimental measurements made as part of the study. Cummings also includes

an empirical model for time variation of the end effect.

Zorumski and Parrott 4, using a Fourier decomposition approach, derive a formula for the

nonlinear effect of high amplitude, multiple-frequency pressure excitation on acoustic impedance

of a perforate. The method is based on the DC flow resistance measured for the perforate and

indicates that the impedance at any frequency is a function of the overall acoustic velocity

3



summedover all frequencies.ZorumskiandTester5andRice6arguethat the particlevelocity at
each frequencyshould be replacedby the total effective particle velocity summedover all
frequencies.

Hersh andRogers7,Hershand Walkers, and Hersh9 have developeda fluid mechanical

model for nonlinear orifice behavior in which they assume the particle velocity approaches the

orifice in a spherical manner. The analysis is limited to a calculation at the tuning frequency of a

Helmholtz resonator, which is assumed to be known. The analysis is semi-empirical in that it

requires measured data to determine two key parameters, an effective orifice radius and an

effective orifice discharge coefficient. The solution for the nonlinear resistance is obtained

numerically by integrating a second-order differential equation in the time domain. Other than the

differences in the equations due to the initial orifice flow assumptions, the method of Hersh is

quite similar to that of Cummings.

The development of the model in this report is based directly on the work of Rice and on

the work of Cummings (which is, in turn, based on the preceding work of Cummings and

Eversman_°). The unique element of this effort is the incorporation of a central difference

numerical integration scheme to account accurately for the effects of a resonator cavity of
arbitrary depth.

1.1.4. Assumptions

The model is one-dimensional in space, so that only a plane wave is assumed to be

incident upon and propagate within the cavity. The input acoustic pressure on the perforated

plate surface is given. The acoustic resistance and mass reactance of the faceplate are assumed to

be lumped in a thin sheet, where the sheet thickness and orifice hole diameter are much less than

the shortest wavelength considered.

For this preliminary development, the mass reactance of the perforate orifices is assumed

to be constant (i.e., the end effects are assumed not to be a function of velocity), and the orifice

discharge coefficient is assumed to be constant in time. The end effects are incorporated through

the input of an arbitrary equivalent orifice length. It is assumed that wave attenuation due to

viscous effects for propagation inside the cavity can be neglected.

1.2. Description of Acoustic Model

1.2.1. Model Geometry

The acoustic model of the SDOF resonator, shown in Figure 2, is that of a resonator cell

mounted at the end of a long tube. The diameter of the tube is sufficiently small that only the

plane wave is cut-on (propagates unattenuated) at the highest frequency of interest. The tube is

assumed to be terminated with a piston source some arbitrary distance from the facesheet on the

4



left. A pressure wave traveling to the right with a known frequency and amplitude content

impinges on the treatment surface.

Sound Perforate Sheet m

Source _t

Pressure
Plane "_ Cavity

Wave i
J l

x=O x=L

Figure 2. Acoustic model for SDOF resonator with normally-incident wave.

The acoustic properties of the perforated plate are lumped at the plane of the faceplate,

and a hardwall reflecting surface is located a known depth behind the faceplate. The input to the

model is the acoustic pressure on the left side of the faceplate, which is combined with the lumped

faceplate resistance and mass reactance to provide the left boundary condition for the cavity. The

acoustic one-dimensional wave equation determines the propagation inside the cavity, and a

hardwall, zero particle displacement condition is the right-hand boundary condition.

1.3. Acoustic Wave Equation for Particle Displacement

The partial differential equation for the acoustic wave propagation is written in terms of

acoustic particle displacement. The acoustic particle velocity, _, can be related to the "strain" of

the medium as

Strain (3)
Ox

where x is the spatial variable. The one-dimensional constitutive equation for the medium can be

written as

p=-A _--- (4)
0x

where p is acoustic pressure and A is the bulk modulus, which for air is

A = ocz (5)



where p is the density of the medium and c is the speed of sound.

given by

y _

Ot

The acoustic particle velocity is

(6)

The wave equation for acoustic particle displacement inside the cavity is

Ox 2 c20t 2
(7)

This will be expressed in central difference form below.

1.4. Boundary Condition for Perforated Sheet and Cavity

At x = L the boundary condition for particle displacement is simply

=o (8)

which reflects the hardwall boundary requirement of zero particle displacement (and velocity).

The acoustic boundary condition at x = 0 is derived from the momentum balance equation

and the fact that the acoustic velocity is continuous across the facesheet (i.e., acoustic velocity

must be equal by continuity just to the left and to the right of the facesheet). The pressure applied

to the fluid in the cavity just to the right of the facesheet will be the incident pressure at the left of

the facesheet minus the pressure drop across the facesheet due to resistive and inertial effects.

The pressure to the right of the facesheet must be balanced by the restoring force of the elastic

medium in the cavity. This can be expressed as:

p(t)- M-_ (9)

where M is the effective mass per unit area, and D is the effective damping per unit area.

particle displacement _ is the value averaged over the area of the facesheet.

The effective mass per unit area can be written as

The

M- 9g
aC d (10)

where g is the effective orifice length (sheet thickness plus end effects), a is the open area ratio or

porosity, defined as the area of the holes divided by the corresponding area of the facesheet, and

6



Cais the orifice dischargecoefficient. Theorifice dischargecoefficientis definedasthe areaof
the venacontractaof theflow from the orifice dividedby the geometricareaof the orifice. To
begin,we will consideronly the linearpart of the facesheetresistanceRL,which canbe takenas
the DC flow coefficientA, fromEquation(1), sowe take

D=R L (ll)

Thedampingforcetermwill laterbeextendedto includethe effectsof nonlinearterms.

1.5. Time Scale Transformation and Numerical Stability

We now make a change to the time scale of the differential equation and boundary
conditions. If we let

x:ct (12)

then the wave equation from Equation (7) is transformed to

- (13)
c3x2 ax 2

and the boundary condition, Equation (9) becomes

LOCDJ ax
(14)

We substitute for A from Equation (5) and normalize by pc 2 to get the non-dimensionalized form

of the boundary condition at x = 0:

_I_]c_2_ R L a_ + l___p(t)+ c3_____= 0 (15)

LoCDJ c_t2 pc at pc 2 i_

This will be the form of the partial differential equation and boundary conditions to which

the central difference formulation is applied for the numerical integration. We define a numerical

integration step size in x as Ax and a step size in t as At.

As described in numerous references on numerical integration of partial differential

equations 11'12'1334,the convergence and stability of the numerical integration is obtained when the

ratio of Ax to Ax is less than or equal to 1.0, or, choosing the equality condition, then

Ax = Ax = cAt (16)

7



This is equivalentto integratingalonga characteristicline of the acousticwavepropagation,and
is theconditionusedin thecentraldifferenceschemefor thisanalysis.

1.6. Calculation Scheme and Output

The numerical integration problem for the SDOF resonator is of the initial value type. The

medium in the cavity is at rest at time zero, at which time a forcing function (the incident plane

wave pressure) is applied to the outside surface of the perforated faceplate. An initial transient

will occur in the cavity as the pressure wave propagates along the cavity and is reflected from the

hard end. Eventually, a steady-state pressure field response will be achieved in the cavity
(transient responses will be damped by the facesheet).

The numerical integration is modeled in space-time as shown in Figure 3, which illustrates

the x-t computation point grid. The space points are denoted by the index i and the time points by
the index j, such that the ia' spatial position is given by

x i = iAx i = 0,1,2,...,N (17)

and the jth time value is given by

xj = jAx j = 0,1,2,...,oo (18)

Note that there are N+I space divisions in the cavity and that the hardwall is located at
x = L = NAx.

The general outline of the computational simulation of SDOF resonator impedance is

shown in Figure 4. The incident pressure is applied at the outer surface of the perforated sheet by

"ramping up" the pressure to its final amplitude over a given number of periods of the lowest

frequency in the pressure signal. The computation is then given a number of longest periods plus

several cavity traverse times as settling time for the transients.
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Figure 3 Computational grid for perforated plate/resonator cavity impedance time-

domain numerical integration model.
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Figure 4. Flowchart for numerical integration

plate/resonator cavity impedance.
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After the solution has achieved steady state, the first data acquisition sequence is initiated,

and the time, pressure and acoustic particle displacement are stored in a block as if they were

being measured as a digitized time series. The acquisition of data blocks continues until the

number of blocks specified for frequency averaging has been acquired. The numerical integration

time step may be much finer than the data acquisition time step, so that there may be many more

points calculated than acquired for the Fourier analysis.

Fast Fourier Transforms are performed on the time history data blocks, giving frequency-

averaged acoustic pressure and particle displacement spectra. The acoustic velocity is computed

as ic0 times the acoustic particle displacement, where 0_ = 2zff, and the impedance spectrum is

found by dividing acoustic pressure by acoustic velocity in each frequency band.

Output files are obtained for the time histories of the input pressure and resulting particle

displacement and velocity, as well as for the pressure, acoustic velocity, and impedance spectra.

The output files can be used as input to standard plotting routines (or spreadsheets) to obtain

graphical output.

10



2. Finite Difference Equation Formulation - Linear Form

2.1. Central Difference Formulation for the Partial Differential Equation

Using the index i to denote x grid points and the index j to denote z grid points, the

acoustic particle displacement at position i and time j can be written as _ij. The finite difference

forms for the first and second derivatives are given by

a____= ¢i,j+l - ¢i,j-1 (19)
O'c 2 A't

0_.____= _i+l,j - _i-l,j (20)
ax 2Ax

02_ _ _i,j+l- 2_i,j+ _i,j-I
(21)

_2_ _i+l,j- 2_i,j+ _i-l,j

2 -
(22)

The central-difference formulation for the partial differential equation (13) can be written

_i+l,j - 2_i,j + _i-l,j _i,j+l - 2_i,j + _i,j-1

(Ax)2
(23)

Using the stability relation from Equation (16), this can be simplified to

_i,j+l= _i-l,j+ ¢i+1,j--¢i,j-I (24)

Figure 5 shows graphically how the particle displacement at time j+l is related to the

displacement at prior times and locations.

11



6 i,j-1

i+l,j

Figure 5. Particle displacement time-step prior influence graph.

2.2. Central Difference Formulation for the Boundary Conditions

The finite difference form for the boundary condition at x = L, i = N is simply

_N,j =0 (25)

for all j-values, since the acoustic particle displacement is zero at the hard wall.

The finite difference form of the boundary condition at x = 0, Equation (15), is

(m + R']_ 2m m R 1
"_- _')o,j+l___o,j+(_.._ __h.)_o,.i_l 1+ p--_Pj + _'( ,,j - _-l,j) --0

(26)

where we define

h=Ax (27)

m- (28)

and

R- RL

pc
(29)

12



Equation(26) canbefurthersimplifiedto theform

where

and

C1 _o,j+l + C2 _o,j-I - C3_O,j + C4(_I,j - _-l,j) + C6Pj -- 0 (30)

m R

C 1 = _- + _-_ (31)

m R
= (32)

C2 h 2 2h

2m

C 3 = _ (33)
h _

1

C4=_- _ (34)

1
C 6 -- -- (35)

- Pc 2

(The coefficient C5 has been reserved for later use.) Note that the boundary condition equation

requires the definition of a fictitious particle displacement at the i = - 1 grid point in x, one step to

the left of the boundary condition surface.

2.3. Initial Conditions

The initial conditions on particle displacement are defined along the first horizontal row of

finite difference grid points, defined by the fine j = 0 (for "c= 0). Since the medium starts at rest,

we also require that the acoustic velocity is zero along this line. These conditions are given in
finite difference form as

_i,0 =0 (36)

and

_i,1 - ¢i,-1 = 0 (37)

13



for all i values. Note that the velocity initial conditionrequiresthe specificationof the particle
displacementatthej = -1 timestep.

2.4. Step-Up and Step-Across Algorithms

To visualize how the numerical integration will proceed, we define two integration

algorithms, the Step-Across algorithm and the Step-Up algorithm, "across" referring to the space
dimension and "up" referring to time.

Consider _ for any succeeding time step at x = 0 (i = 0). Equations (24) and (30) can be
combined to give

_0,j+l= = -D1Pj - D2 _0,j-I + D3_o,j - D4 _l,j (38)

where

D1 - C6 (39)
C 1 - C 4

D2- C2-C4 (40)
C 1 - C 4

D3 - C3 (41)
C 1 - C 4

and

D4- 2C4 (42)
C 1 - C 4

This is the Step-Up algorithm, which gives the next time increment from prior time values at the

faceplate. The Step-Up algorithm, since it is defined at x = 0, incorporates the perforated plate

boundary condition into the solution.

With the next highest time value (j+l) given at the le_ edge, we can then step across to fill

in the row j+l (i = 1 to N) using Equation (24), which becomes the Step-Across algorithm. Once

the first two rows are determined using the initial conditions, the rest of the solution can be found

for all times. The Step-Across algorithm incorporates the resonator cavity response into the
solution.

When the Step-Across algorithm is used to fill in all rows for j = 1 and higher, the zero

acoustic displacement boundary condition at x = L (i = N) must be enforced.

14



2.5. Starting the Numerical Integration

The _ values for the first row are already given in Equation (36). To obtain the second

row, we use Equation (38) at j = 0 and the initial condition on acoustic velocity in Equation (37)

at i = 0 to obtain the particle displacement at i = 0 and j = 1,

94

_0j - 1+ D 2 P0 (43)

The Step-Across algorithm can be used to fill in the rest of row two. Making the

substitutions, it can be shown that _1 is zero for all i. This is not surprising, for the acoustic

perturbation which has just initiated due to turning on the incident pressure at the surface has had

no time to propagate into the cavity.

15



3. Incorporation of the Nonlinearity in the Boundary Condition

3.1. Boundary Condition Equation

We now add a nonlinear resistance term to the perforated plate pressure-balance boundary
condition, so that it takes the form

1 R L 0_ RNL _ 0_ g o_ 0_
p Jr _= 0 (44)

pC 2 pC 0Z p _ _ (_C D 0"c 2 0x

where RNL is the nonlinear resistance coefficient which can be identified with the coefficient B in

the DC flow resistance given in Equation (1). The absolute value of the velocity must be taken to

assure that positive damping occurs on both sides of the acoustic velocity cycle.

It is useful to review the physical interpretation of each of the terms in the perforated plate

boundary condition equation. The first term is due to the applied acoustic pressure, p, on the

perforate outside surface. The second term is the linear contribution to the damping force,

proportional to the particle velocity. The third term is the nonlinear contribution to the damping

force, proportional to the square of the acoustic velocity. Together, the two damping terms are

equivalent to those that would be obtained from a DC flow resistance measurement, making the

identification of the rms value of the acoustic velocity with the magnitude of the DC flow

velocity. The fourth term is the inertance contribution of the mass reactance, dependent upon an

equivalent orifice length, g. The last term is the restoring force due to the compression of the

elastic medium in the cavity at x = 0.

3.2. Finite Difference Formulation

Equation (44) can be expressed in finite difference form as

_o,j+l =-D1Pj- D2_O,j-1 + D3_O,j- D4 _,,j + DS(_0,j+I- _o,j_l)l_o,j+l- _0,j_ll (45)

where D_ through D4 have the same definitions as given previously,

D5 - C5 (46)
C 1 -- C 4

and where

C 5 - RNL
4ph2 (47)

16



C_throughC4havethesamedefinitionsasbefore. Equation(45)cannotbe solvedexplicitly for
_0j+l,andmustbesolvedby aniterativetechnique.

3.3. Nonlinear Velocity Iteration Algorithm

The particle displacement at time j+l is extracted from the nonlinear equation (45) using a

Newton-Raphson iteration technique. We write the equation in the form

f(_P) = D5(_P- _M)_P -_M[ + T1 -%P

where

(48)

and

_v = _0,j+l (49)

=  0j-1 (50)

T1 = -Dip j - D2 _o,j_ 1 + D3_o, j - D4_l, j (51)

The quantities _M and T1 are constant over the iteration.

The Newton-Raphson iteration is written in the form

f(_p(n)) (52)

_p(n+l) = _p(n) f'(_p (n))

where n is the iteration number and where the prime denotes the derivative with respect to _p. It

can be shown that the derivative in the denominator takes on the same value for either _p > _M or

_P < Era, and that it is given in finite difference form by

f'(_P)= 2.0"Dsl_P " _M 1-1"0 (53)

In most cases attempted so far, the iteration converges quite rapidly, although further work is

needed to assure that this algorithm is working properly.
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4. Numerical Integration Computer Program Operation

4.1. Computer Program

The computer program ZORF4 has been written to accomplish the numerical integration

and time-series Fourier analysis leading to a prediction of the cavity resonator impedance.

ZORF4 is written in FORTRAN for use on the IBM-PC This FORTRAN version could be easily
adapted for use on other computers.

Proper use of the program requires some insight to the methods by which the calculations

are accomplished and how some of the input variables are interpreted and established. This

section documents the use of the computer program.

4.2. Program Limitations

The dimensions of arrays in the computer program were sized based on estimates of the

largest number of grid points in the x-direction that might be encountered for a reasonable

problem. The acoustic particle displacement values (real, double precision) must be stored for

only three rows of time values simultaneously. The values are written to a file on disk for each

row as it is calculated. The maximum number of grid points in the x-direction is set at 5000 using
the following reasoning:

1. Assume the maximum frequency encountered will be 40,000 Hz.

2. The speed of sound is nominally 34,000 cm/sec (room temperature value).

3. This gives a wavelength, _,, of about 0.85 cm at 40 KHz.

4. Assume the resonator cavity depths will be at most 10 of these shortest wavelengths (8.5 cm,
about 3.3 in.)

5. The minimum desired grid spacing will use at most 500 points per wavelength.

6. Multiplying 10 wavelengths by 500 points per wavelength gives 5000 grid points, maximum.

The grid points are assumed to be equally spaced. Storage is not a problem for an IBM

PC, so that the maximum array dimensions could be increased, if desired.

For the FFT spectral analysis, the maximum time sequence block size is 1024 points, and

the value chosen must be a power of 2. The time interval FFT data sampling is chosen to be an

integral number of numerical integration time steps, say N_p, so that every n th data point is

stored as the time history for spectral analysis. Up to 16 frequency averages are allowed.
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4.3. Time Constants

4.3.1. Numerical Integration Time Step

The numerical integration time step is related to the numerical integration stability

condition given in Equation (16). The integration distance step size will be some small fraction of

a wavelength required to achieve convergence. Experience in running the program indicated that

up to several hundred points per wavelength were required to achieve acceptable convergence.

Denote the value of points per wavelength at the shortest wavelength (highest frequency), which

is input to the program, as Npp_. Then the distance step size is given by

C
Ax - (54)

8NpplFph

where Fph is the highest frequency component in the pressure input signal and c is the speed of

sound. The multiplier 8 in the denominator is chosen because the highest frequency in the data

analysis (the Nyquist frequency) is set to 8 times the highest frequency in the input signal.

The numerical integration time step, in normaliTed form Ax, is equal to Ax, by the stability

criterion. The actual numerical integration time step will be Ax divided by the speed of sound, or

1
At- (55)

8NpplFph

If the minimum Ax is the shortest wavelength divided by 500, then the minimum numerical

integration time step (in real time units) will be

Axmin _min 0.85
Atmin _=__ = _ = = 5 x 10 -8 seconds (56)

c 500c 500" 34,000

where the minimum wavelength _ of 0.85 cm. is based on the assumption of a highest

frequency of interest of 40,000 Hz. and a minimum speed of sound of 34,000 cm/sec.

4.3.2. Transient Decay Time

Before initiating data acquisition of the acoustic displacement time history for spectral

analysis, it is necessary to be assured that the solution has achieved steady state and any transients

caused by "switching on" the applied pressure at time zero have decayed sufficiently to have

negligible effect. The procedure used to set the elapsed time before initiating the first data

acquisition is described in this section.

If we assume a maximum cavity depth of interest of 5 cm., then the longest time required

for a plane wavefront to traverse the cavity in both directions will be
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L 5cm
Tcavmax=-= _ 3.0E-4 sec (57)

c 34000cm/sec

If we assume that the lowest frequency of interest is 100 Hz., then the maximum wave period will
be

Tpermax = 0.01 sec (58)

These quantities can be used to estimate a required solution "settling time" during which

transients caused by switching on the applied pressure are allowed to decay. We are assuming

that the damping inherent in the facesheet will always be sufficient to eventually eliminate the
transient from the solution.

The acoustic pressure applied to the faceplate is obtained by summing a Fourier series of

frequency components, and this pressure may not be zero at time zero. This finite jump in

pressure at time zero will introduce a transient into the solution. To guarantee that the pressure

starts from zero and builds slowly, a linear ramp function that extends over the first three longest

periods (that is, the period of the lowest frequency component of the applied pressure), increasing

from zero to one, is multiplied into the applied pressure.

Then a settling time equal to at least three more longest periods is added, with an option

of adding as many additional longest periods as desired. Finally, a time period equal to the time

required for the wave to traverse the cavity (one-way) four times is added. The only means of

determining whether, in fact, the transient has decayed acceptably is to repeat the case with an

increased length of delay interval and compare the results with the initial run.

4.4. Spectral Analysis

4.4.1. Data Sampling

When the process reaches a steady state, the data acquisition can be initiated. Time

histories are acquired for the particle displacement and the applied pressure. Data is acquired in

blocks in the same manner as it would be acquired by the analog-to-digital board of a digital

spectral analyzer. FFT's are applied to each of the data blocks and the results are then frequency-

averaged.

The pressure input frequencies are chosen such that they can be matched exactly by the

data analysis output frequencies. This allows the use of a rectangular window, eliminating the

need for more exotic windowing.15 Some forethought is required for the initial choice of pressure

frequencies, for they must align with the frequency bins of the FFT of the solution based on a data

acquisition sample size that is a power of 2.
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The numericalintegrationtime stepis much finer than the time step required for data

sampling. The Nyquist frequency for the data analysis is set at 8 times the highest frequency in

the pressure input signal. The sampling time interval Ax commensurate with achieving this

Nyquist frequency is given by

C

AZsamp = -- (59)
16Fph

The number of numerical integration time intervals per data sampling time interval is then given by

A'l:samp - Nppl (60)
Nsamp - A't 2

By choosing Nml to be a multiple of 2, we guarantee that there will always be an integral number

of time intervals between data sampling points. This is a convenience that makes it unnecessary

to store the results of the numerical integration between data sampling points as long as the points

are counted. Storing each integration point would be required if it were necessary to interpolate

the results to the required data sampling time.

The block size of the data acquisition, Nblk, is provided as input. This must be an integer

power of 2 for the convenience of the FFT. The data block record length is, then, in real time

units,

Trec - Nblk (61)

16Fph

and the frequency resolution of the resulting spectra is

16Fph
Af - (62)

Nblk

The maximum block size is Nm = 1024, which give a finest frequency resolution of 1/64 of F#.

Recall that the pressure input frequencies must be input at exactly these frequencies.

Some combinations of parameters Af, Fph, and Nblk must be chosen at the start to assure

the data analysis frequencies and pressure frequencies match (there may be more data analysis

frequencies than pressure frequencies, but the pressure frequencies must align with data analysis

frequencies). If pressure data is from a measured FFT spectrum, the values may have to be

combined in different bandwidth frequency bins to fit the data requirements of ZORF4. The

choice of these parameters may have to be guessed iteratively, and an artificial Fph with very low

pressure values may have to be created to obtain the desired results.
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4.4.2. Computation of Acoustic Pressure, Velocity, and Impedance

The acoustic pressure is needed at the surface of the perforated plate• The pressure is

given as input to the problem, in terms of its frequency spectral components. To obtain the time

history of the pressure at any arbitrary time, t, it is necessary to expand the Fourier components of
the frequency,

NFP

p(t) = _ PF n e 'c%t
n=l

(63)

where PFn is the n th complex spectral frequency component, con is the nth circular frequency, and

NFP is the number of frequencies with coefficients not equal to zero.

The pressure on the faceplate due to a normally-incident pressure wave is assumed to be

known. Usually, only the acoustic pressure of the incident wave would be known, but the actual

excitation pressure is that due to the combined incident and reflected waves at the surface. The

reflected wave component, however, depends on the impedance of the surface, which is not
known a priori.

If Pfwd is the amplitude of the incident (forward-traveling) pressure wave for the e

component in the frequency domain, impinging on the facesheet from the left (outside the cavity),
then the known forward-traveling part of the pressure wave is

Pfwd (X) = Pfwd ei(kx-et) (64)

Using the impedance-matching boundary condition at the faceplate surface (x = 0), it can be

shown that the resultant overall acoustic pressure at the faceplate outside surface is given by

p(O)- 2Pfwd (65)
1+o_

where

pc
ot = -- (66)

Z

is the normalized acoustic admittance of the surface. Note the expected pressure-doubling when

the impedance is infinite (hardwall surface).

The SPL at the surface, then, must be determined from the rms magnitude of this resultant

pressure,

22



2Pf oI ms (67)

[P(0)[rms = _/1 + Re(or)+lot[ 2

The input to ZORF4 is the complex resultant pressure p(0).

To obtain the incident pressure wave component that will provide a desired surface SPL,

one must work backwards iteratively through the above equations, since the impedance may

change as a function of pressure amplitude. Given only the incident pressure wave component,

one would have to solve iteratively to determine the impedance, since it is a function of the

resultant pressure, which in turn depends on the impedance.

The frequencies must be chosen to align with the frequency bins of the FFT data

processing, and thus should be some integer multiple of Af as given in Equation (62). Note that it

is not necessary to include a pressure spectral coefficient for each frequency between 0.0 and the

highest frequency. The input could consist of only several widely spaced tones. The sum is over

only those pressure coefficients with finite values, which saves some computation time.

The input pressure coefficients PF. should be in physical pressure units of dynes/cm 2 peak

amplitude. The SPL is then computed from

= 20log P
SPL (q_(O.O002)] (68)

where p is either the pressure in a spectral frequency bin or some combination of adjacent

pressures.

The spectral components of the acoustic pressure are given, but the spectral components

of the acoustic velocity must be obtained from an FFT of the acoustic displacement time history

solution at the faceplate. If X. represents the n th spectral component of acoustic displacement at

circular frequency co,, then the n th component of acoustic velocity is given by

Wn e-i°nt = _n = -io nXn e-ic%t (69)

or

Vn = -i(o aXn = -i2:rt'fnX n (70)

Given the pressure and velocity components at each frequency, the acoustic impedance

normalized by pc is simply

Zn- Pin (71)
pc ocV n

23



The real part of this is the acousticresistanceandthe imaginarypart is the acousticreactance,
bothnormalizedby pc.

4.5. ZORF4 Program NAMELIST Input Guide

The computer program ZORF4 that implements the above analysis is written in

FORTRAN code and runs on an IBM-PC compatible computer. Input to the program is through

a NAMELIST data file, as follows:
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ZORF4 NAMELIST INPUT GUIDE

77me in sec, Displacements in cm., Pressure in dynes/cm^2, Velocity in cm/sec
DP implies a double precision variable

&ZDAT

HEAD ='Case Title' Filenames up to 30 characters

DFOUT='path/filename' Case data output file

DFTHDAT='path/filename' Time history of acquired data:

Formatted as Block# Sample# Time Pressure Displacement(O)

DFTRNST='path/filename' Transient time history up to start of D/A:

Formatted as TimePnt# Time Pressure Displacment(O)

DFSPECT='path/filename' Spectral data:

Formatted as Freq Prms SPL Vrms Zrcn

RLIN= Linear resistance (DC flow A-value) cgs Rayls (DP)

RNL= Nonlinear resistance (DC flow B-value) cgs Rayls/(cm/sec) (DP)

SIGMA= Faceplate porosity (open area ratio) (DP)

DCAV= Cavity depth, cm. (DP)

RHO= Air density, g/cm^3 (DP)

CS= Speed of sound, cm/sec (DP)

EFFLGTH= Effective odfice length, cm (DP)

CD= Orifice discharge coefficient (DP)

CFNL= Nonlinear term coefficient, set to 1.D0 or 0.D0

NFP= Number of input frequencies

PF(1)= Complex DP array of pressures at each frequency (peak amplitude, dyneslcm^2)

FRQP(1)= DP array of frequencies for pressure input

NBLKSZ= Data acquisition block size (power of 2, up to 1024)

NTDO= Number of extra cycles for transient dieout, based on period of lowest frequency

NDSAMP= Number of averages for frequency averaging, up to 16

/
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The input data file should be given the name ZORF4IN.NML, and it should reside in the

same directory as the ZORF4.EXE file. Be sure to back up prior NAMELIST data files that are

to be saved with a different name. The output files are written to the directory and filename

specified in the NAMELIST input.

4.6. Sample Case

A sample case was chosen to illustrate the use of the ZORF4 program. The case includes

multiple frequency pressure input, with an applied pressure of 130 dB SPL in ten adjacent 125

Hz. bin width frequency bands from 875 I-h. to 2000 Hz. This case will be used later to compare

the time domain numerical integration impedance model with the frequency domain model.

The basic input parameters for SDOF resonator are defined as follows:

Faceplate porosity = 5.0%

Faceplate thickness = 0.032 inches = 0.081 cm

Faceplate hole diameter = 0.132 inches = 0.132 cm

Cavity depth = 1.0 inches = 2.54 cm

Other constants are:

Air density = 0.001206 g/cm 3

Speed of sound = 34,394 cm/sec

Orifice discharge coefficient = 0.76

Absolute viscosity = 1.7894E-4 g/(cm-s)

These are characteristic of air at about 70 degF.

Additional inputs are the effective orifice length, the linear resistance, and the nonlinear

resistance. These parameters, derived using equations given in the following section, are:

Effective orifice length = 0.176 cm

Linear resistance = 0.5020 cgs Rayls

Nonlinear resistance coefficient = 0.2088 cgs Rayls/(cm/sec)

The following is an input sheet for the ZORF4 run:

&ZDAT

HEAD='SAMPLE CASE #i'

DFOUT='SCI.OUT'

DFTHDAT='ZSCI.DAT'

DFTRNST='TSCI.DAT'

DFSPECT='SSCI.DAT'

RLIN=0.502D0

RNL=0.2088D0
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SIGMA=. 05D0

DCAV=2.54D0

RHO=. 001206D0

CS=34394 .DO

EFFLGTH= 0 .176D0

CD=. 76D0

CFNL=I. 0D0

NFP=I0

PF(1)=(894.43D0,0.D0), (894.43D0,0.D0), (894.43D0,0.D0), (894.43D0,0.D0)

PF(5)=(894.43D0,0.D0), (894.43D0,0.D0), (894.43D0,0.D0), (894.43D0,0.D0)

PF(9)=(894.43D0,0.D0), (894.43D0,0.D0)

FRQP (I)=875. ,I000. ,1125. ,1250. , 1375.

FRQP (6) =1500. , 1625. , 1750. , 1875. ,2000.

NBLKSZ=256

NTDO=5

NDSAMP=3

/

The following is the main output run for this case, which was written into file S C 1.OUT:

PROGRAM ZORF4

TIME DOMAIN CENTRAL DIFFERENCE MODEL FOR IMPEDANCE OF

NONLINEAR SDOF RESONATOR COVERED BY PERFORATED PLATE

TITLE: SAMPLE CASE #i

RLIN = .502000 cgs rayls

RNL = .208800 cgs rayls/(cm/sec)
SIGMA = .050000

CAVITY DEPTH = 2.540000 cm

EFFECTIVE CAVITY DEPTH = 2.536557 cm

RHO = .001206 g/cm^3

CS = 34394.000000 cm/sec

RHO*C = 41.479164 cgs Rayls

EFFECTIVE ORIFICE LENGTH = .176000 cm

Cd = .760000

# OF PRESSURE FREQUENCIES = I0

DATA ANALYSIS BLOCK SIZE = 256

# DATA SAMPLE BLOCKS TA/<EN = 3

# INTEGRATION PNTS PER SHORTEST WAVELENGTH =

# EXTRA CYCLES SETTLING TIME (NDTO) = 5

# TIME STEPS TO D/A START = 30202

200

OUTPUT DATA FILES:

INPUT DATA AND PARAMETERS - SCI.OUT

PRESS & VELOC TIME HIST - ZSCI.DAT

INITIAL TRANSIENT TIME HIST - TSCI.DAT

OUTPUT F,P,V, ZRC SPECTRA - SSCI.DAT

J FREQ CMPLX PRESSURE COEFF

1

2

3

4

5

6

875 00

1000 00

1125 00

1250 00

1375 00

1500 00

8.944300E+02

8.944300E+02

8.944300E+02

8.944300E+02

8.944300E+02

8.944300E+02

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

SPL

130.00

130.00

130.00

130.00

130.00

130.00
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7 1625.00 8.944300E+02 0.000000E+00

8 1750.00 8.944300E+02 0.000000E+00

9 1875.00 8.944300E+02 0.000000E+00

I0 2000.00 8.944300E+02 0.000000E+00

LOWEST PRESSURE FREQ = 875.00 Hz

HIGHEST PRESSURE FREQ = 2000.00 Hz

UPPER ANALYSIS FREQUENCY = 16000.00 Hz

DATA ACQUISITION DELTA T = 3.1250D-05 sec

TIME STEP = 3.12500E-07 sec

HH or DELTA TAU = 1.07481E-02 cm

NONLINEAR TERM COEFF = 1.0000

CFI = -3.0471D+04

CF2 = -3.0470D+04

CF3 = -6.0941D+04

CF4 = 4.6520D+01

CF5 = 3.7468D+05

CFI - CF4 = -3.0517D+04

D1 = -2.2969D-II

D2 = 9.9996D-01

D3 = 1.9969D+00

D4 = -3.0487D-03

D5 = -1.2278D+01

LONGEST CYCLE TIME = 1.1429D-03 sec

SETTLING TIME = 9.1429D-03 sec

CAVITY BOUNCE TIME = 7.3850D-05 sec

TIME TO START OF D/A = 9.4381D-03 sec

130.00

130.00

130.00

130.00

SAMPLE CASE #i

FRQ PRMS SPL VRMS

.000 1.84322E-05

125.000 4.96309E-05

250.000 4.15485E-05

375.000 4.35998E-05

500.000 5.61563E-05

625.000 7.44867E-05

750.000 1.32280E-04

875.000 6.32457E+02

1000.000 6.32457E+02

1125.000 6.32458E+02

1250.000 6.32458E+02

1375.000 6.32457E+02

1500.000 6.32457E+02

1625.000 6.32457E+02

1750.000 6.32458E+02

1875.000 6.32458E+02

2000.000 6.32458E+02

2125.000 2.93880E-04

00

00

00

00

00

00

.00

130.00

130.00

130.00

130.00

130.00

130.00

130.00

130.00

130.00

130.00

3.34

0 00000E+00

2 05345E-02

5 70915E-02

1 36698E-01

3 II184E-01

6 98051E-01

1.51042E+00

8.00341E+00

9.62628E+00

1.13897E+01

1.32377E+01

1.53689E+01

1.82088E+01

2.36269E+01

2.07269E+01

1.89357E+01

1.75159E+01

7.70186E+00

RESIS/RHOC

00000

- 00006

00000

00001

00000

00000

.00000

.77985

.85589

88111

88617

85339

78394

64530

67415

64474

54415

00000

REACT/RHOC

.00000

-.00001

.00002

.00000

.00000

.00000

.00000

-1.73821

-1.33280

-1.00787

- 73581

- 50597

- 29433

- 00767

29444

48240

67946

00000

The results of the computation are found in the last table. A plot of the calculated impedance is
shown in Figure 6.
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Figure 6. Computation of impedance by ZORF4 for sample case.

The convergence of the numerical integration solution depends critically upon the number

of grid points per wavelength used for the computation. Table 1 below shows the solution
convergence comparing calculations with 100 and 200 points per wavelength. Notice that the

solution has converged out to the third decimal place.

Table 1.

100 ptslwavelength
Frequency Resistance Reactance

875 0.7811 -1.72875

1000 0.85565 -1.32442
1125 0.88038 -0.9995
1250 0.88628 -0.72759

1375 0.85283 -0.49994
1500 0.77984 -0.28886

1625 0.64522 0.00498
1750 0.6785 0.30041
1875 0.64803 0.48742

2000 0.54877 0.68181

Comparison of ZORF4 im

points per wavelength.

)edance corn

200 ptslwavelength
Resistance Reactance

0.77985 -1.73821
0.85589 -1.3328
0.88111 -1.00787

0.88617 -0.73581
0.85339 -0.50597

0.78394 -0.29433
0.6453 -0.00767

0.67415 0.29444
0.64474 0.4824

0.54415 0.67946

)utation convergence for 100 and 200
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ZORF4also creates four auxiliary data files. The most useful file is the ASCII table of

pressure, velocity, and impedance versus frequency, for it can be imported easily into a plotting

program. Users should be aware that the transient time history data files can become several

megabytes large. Unless the transient behavior is of interest, these files should be deleted.

4.7. Check for Transient Decay

Assurance is needed that transients in the solution caused by "switching on" the pressure

excitation at time zero have decayed to the point of having negligible effect on the impedance

determination. It is assumed that the natural damping in the facesheet will act to attenuate these

transients in the numerical integration.

The time constant used to attempt to achieve transient elimination is the period of the

lowest frequency component in the pressure excitation (assuming no zero-frequency component).

The pressure excitation "ramps up" linearly over the first three (or more) longest periods plus four
cavity traverse times as the default settling time condition.

The user has an option of adding an arbitrary number of additional long period cycles to
the settling time. The sample case defined in Section 4.6 was run with two different transient

settling times, first with no extra periods in the settling time (default condition), and then with an

additional five longest periods added, and the results were compared.

Table 2 shows the comparison of the impedance calculation at each frequency for the two

different transient decay times. The excellent agreement can be noted, indicating acceptable

convergence for this case. The actual time history of the acoustic particle displacement transient

for the default settling time case, up to the time of initiation of data acquisition, is shown in Figure
7.

Frequency, Hz.
Normalized Impedance

Decay time = 0.00372 sec Decay time = 0.00944
875 1.0593 -1.7051i 1.0629 -1.7007i
1000 1.1487 -1.2332i 1.1491 -1.2396i
1125 1.1681 -0.8660i 1.1652 -0.8613i

1250 1.1296 -0.5240i 1.1365 -0.5275i
1375 1.0632 -0.1864i 1.0511 -0.1842i
1500 1.0705 0.2379i 1.0862 0.2333i
1625
1750
1875
2000

1.1525
1.0864
0.9971
0.8238

0.4354i
0.6511i

0.8686i
1.1052i

1.1416
1.0930
0.9916

0.8258

0.4420i

0.6485i
0.8667i
1.1094i

Table 2 Comparison of impedance computation for two transient decay times.
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Since the Fourier transforms and averaging were taken for two different samples, some of

the difference may be due to differences in the time samples, as opposed to being caused by the

transient. In any case, neither cause has led to large differences. Further parametric studies are

required before concluding unequivocally that there is no transient decay problem or to develop

generalized acceptable decay time rules.
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5. Comparison of Time-Domain Prediction to Frequency-Domain Models

5.1. Relation of Parameters to Current Impedance Models

The quantities m, RE, and R_ are related to the physical parameters in the perforated

facesheet. Conventionally-used models are discussed in detail in Reference _6. In this section, we
will first consider the mass reactance and then the resistance.

The mass reactance of a perforated sheet is given by

X m _ 27tf(t+ed)

pc coC d
(72)

where t is the facesheet thickness, d is the hole diameter, and e is an end correction coefficient.

The effective orifice length is given by

g = t+ed (73)

Various expressions for the end correction coefficient e are discussed in Reference 16.

From Equation (28), we can identify m as a factor in the mass reactance, such that

27tf g
X m - m = -kin = k-- (74)

C GC d

It is important to note that the expression for mass reactance in Equation (74) differs from that in

Reference 16 by the presence of the orifice discharge coefficient in the denominator. Most

derivations of mass reactance for a perforate omit this factor. Since the effective orifice length is

usually empirically-determined, any effect of the 1�Ca factor is incorporated into the effective

orifice length.

The mass reactance is known to vary with the acoustic velocity amplitude (that is, with

SPL) as well as being proportional to frequency. The variation with porosity may be more
complex than a simple inverse variation. In order to be able to model the effects on mass

reactance of the velocity-dependence of the slug of air in the orifice (the effective length) and the

possibly independent variation of the orifice discharge coefficient separately, the form that has Ca
in the denominator is chosen here.

A commonly used expression for the finear part of the DC flow resistance is

32pt_t
R L - (75)

OCd d2
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wherev is the kinematicviscosity. A model for the coefficientof the nonlinearpart of the DC

flow resistance is

9 (76)
RNL - 2(aC D)2

Some interpretations are necessary to adapt these models for use in ZORF4. The

empirical rule for the equivalence of DC flow resistance measurements and acoustic faceplate

resistance is to identify the DC flow incident velocity with the rms acoustic incident velocity.

From Equation (1), the DC flow resistance across the facesheet is given by

RDC - ApDC - A +BU (77)
U

where U is the incident DC flow velocity incident upon the facesheet. The coefficients A and B

are the measured linear and nonlinear DC flow resistance coefficients, respectively. The

corresponding acoustic resistance is given by

_c=RL_+R_u_ (78)

where u_ is the rms acoustic particle velocity. Assuming the equivalence of the resistance for the

DC flow and the acoustic cases, and the equivalence of U and u_ , we identify RLtN = A and

R_=B.

The frequency-domain impedance models use the assumption that u_ can be identified

with the DC flow velocity to determine the faceplate resistance at any given frequency. Due to

what is called a "bias effect", it has been found that the validity of the frequency-domain models

can be improved by making the additional assumption that u_ is the overall rms acoustic velocity,

integrated over the entire frequency spectrum. This leads to a predicted resistance that is

essentially constant with frequency, since the overall u_ is the same at each frequency.

The assumption for the time-domain model is that the instantaneous flow resistance across

the facesheet is given by the DC flow resistance relationship where U is identified with the

instantaneous value of velocity as computed by the numerical integration. In this manner, the

faceplate velocity contains all frequency components. This may reproduce the frequency-domain

bias effect, but should maintain any effects of variation in pressure frequency spectrum shape.

The issue is whether the DC flow measurement coefficients A and B are appropriate for the time-

varying acoustic flow, or whether more sophisticated models are required. This issue must

ultimately be resolved by comparison with experimental data.

The objectives for developing the time-domain model are to confirm or improve the

perforated faceplate resistance and mass reactance models based on insight gained from the

results of the numerical computations and their comparison to measured data. The numerical
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modelallows fine-tuningof the effectsof variationof anyof the parametersthat makeup the
impedancemodel,suchastheorificedischargecoefficientor effectiveorificelength.

5.2. Comparison of Time-Domain and Frequency-Domain Predictions

5.2.1. Multiple-Frequency Nonlinear Sample Case

The impedance of the treatment panel defined in the sample case in the previous section

was predicted using a current frequency-domain model. Figure 8 shows a comparison of the

impedance predicted by the time-domain model and the frequency-domain model.
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Figure 8. Comparison of time-domain and frequency-domain predicted impedances.

Note that, for this particular case, the time-domain model predicts both higher resistance

and reactance. The added reactance is caused primarily by a higher prediction of mass reactance

by the time-domain model. This reflects the use of the Cd factor in the denominator of the time-

domain model and its absence in the frequency-domain model. Note that the resistance predicted

by the time-domain model is relatively flat, but not perfectly flat like the prediction for the
frequency-domain model.

As we shall see later, one cannot at this point make the generalization that the time-

domain model always over-predicts the resistance or mass reactance. Each case must be
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examinedindividually. Theultimateresolutionof modelaccuracymust comefrom comparison
with experimentally-measuredvalues,andthiswill bethe subjectof thefollowing section.

5.2.2. Linearized Multiple-Frequency Sample Case

In the previous section, we found a disagreement between the time-domain and frequency-

domain impedance models both with regard to nonlinear resistance and mass reactance.

Assurance is needed that the two models give equivalent results for a case where the

discrepancies caused by the nonlinear resistance iteration and the assumptions about the presence

of the discharge coefficient in the mass reactance denominator are eliminated.

In this section, a sample case is considered in which the resistance is purely linear and the

discharge coefficient is included in the mass reactance term for both models. The faceplate

parameters remain the same as the previous sample case.

To linearize the resistance in the frequency-domain model, the DC flow resistance B-

coefficient is set arbitrarily to zero and a grazing flow effect for Mach 0.1 is added to give a total

resistance of 1.017 pc. In the time domain model, then, the RuN input is set equal to 1.017 pc and

the R_ input is set equal to zero. The results of the predictions are shown in Table 3.

Frequency Domain Time Domain

Frequency Resistance Reactance Resistance Reactance

875 1.0169 -1.5859 1.0199 -1.5782

1000 1.0169 -1.1522 1.0202 -1.1455

1125 1.0169 -0.7866 1.0199 -0.7805

1250 1.0169 -0.4688 1.0202 -0.4631

1375 1.0169 -0.1854 1.01 99 -0.1802

1500 1.0169 0.0721 1.0201 0.0773

1625 1.0169 0.3099 1.0200 0.3145

1750 1.0169 0.5324 1.0199 0.5372

1875 1.0169 0.7426 1.0201 0.7469

2000 1.0169 0.9431 1.0198 0.9477

Table 3. Comparison of linear impedance predicted by frequency-domain and time-
domain methods.

Note the excellent agreement, assuring that there are no fundamental differences between the

frequency-domain computation and the time-domain computation, at least for this linear sample

case.
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6. Comparison of Predicted and Measured Impedance

6.1. Single-Frequency Pressure Excitation

Normal incidence impedance tube measurement data were obtained for two perforated

plate facesheets using pure tone excitation of a known SPL. The two perforates differ primarily
in their porosity, and are defined in Table 4.

Table 4.

Parameter

Porosity
Thickness, inches
Hole diameter, inches
Cavity depth, inches
Frequency, Hz.
Linear Resistance, cxjs Rayls
Nonlinear Resistance,
cgs Rayls/cm

Effective Orifice Length, cm

Faceplate 1
0.045
0.032

Faceplate 2
0.157
0.032

0.060 0.050
0.75 0.75
1500 3000
0.594 0.245
0.526 0.0432

0.192 0.159

Facesheet definition for single frequency predicted and measured impedance
comparison.

Two SPL values are used in each case, 130 dB and 140 dB. Tables 5 and 6 are

comparisons of impedances predicted using the frequency-domain model both with and without

the Cd factor in the denominator of the mass reactance, the time-domain model, and the measured
value.

Plate I -4.5% Porosity Normalized Impedance
Model 130 dB 140 dB

Measurement 0.587 - 0.222i 1.874 - 0.489i
Time-domain model 0.464- 0.177i 0.839 - 0.165i
with Cd in mass reactance
Frequency-domain 0.416 - 0.201i 0.761 - 0.201i
with Cd in mass reactance
Frequency-domain 0.303 - 0.570i 0.678 - 0.570i
no Cd in mass reactance

Table 5. Comparison of predicted and measured impedance for Faceplate #1.

Plate 2 - 15.7% Porosity Normalized Impedance
Model 130 dB 140 dB

Measurement 0.188 + 0.1248i 0.330 + 0.069i
Time-domain model 0.104 + 0.155i 0.221 + 0.155i
with C_ in mass reactance
Frequency-domain 0.092 + 0.151i 0.199 + 0.151 i
with C_ in mass reactance
Frequency-domain 0.123 - 0.024i 0.222 - 0.024i
no Cd in mass reactance

Table 6. Comparison of predicted and measured impedance for Faceplate #2.
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The comparisons show mixed results. Generally, all models tend to under-predict the

measured resistance. For both cases, the reactance values tend to bracket the measured value.

No clear advantage can be seen for either the time-domain or the frequency-domain models, but it

is also obvious that the time-domain model is not generating large errors. One can conclude that

both models require improvement in the modeling of the resistance and mass reactance of the

perforate if increased accuracy is the objective.

6.2. Multiple-Frequency Pressure Excitation

An acoustic impedance measurement was performed by Rohr, Inc using a perforate plate

SDOF treatment with the following parameters:

Porosity = 4.43%

Hole diameter = 0.0453 inches = 0.1151 cm.

Faceplate thickness = 0.031 inches = .07874 cm.

Cavity depth = 0.75 inches = 1.905 cm.

The measurement temperature was 67.9 degF. The treatment was excited by a fairly fiat

broadband pressure spectrum with an overall SPL of 149 dB. The time-domain prediction was

made by combining the original measured 8 Hz. binwidth measured spectral pressure values into

far fewer 576 Hz. bins. This was required by numerical computation problems encountered in the

ZORF4 runs.

Figure 9 is a comparison of the measured impedance with the predictions from the

frequency-domain and the time-domain models. The following observations can be made:

• The frequency-domain model predicts the measured resistance quite closely. The measured

impedance is quite flat, although some variation not predicted by the frequency-domain model

can be observed.

• The frequency-domain model overpredicts the mass reactance by a significant amount. This is

in part due to the inclusion of the 1/Cd term in the mass reactance for this prediction. This

factor was included to be able to compare the results directly to the time-domain prediction.

• The time-domain model overpredicts the measured resistance by a large amount above about

1700 Hz.

• The time-domain model shows a large overprediction of the mass reactance.
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Figure 9. Comparison of measured and predicted frequencies for SDOF treatment

with broadband pressure excitation.

The extreme overprediction of resistance and mass reactance by the time-domain model

appears to be characteristic of the computation for high SPL values and multiple frequency input.

The problem is exacerbated by large numbers of pressure frequencies, under which condition the
computation will go unstable. The problem is caused by a combination of the nonlinear resistance

algorithm, the high SPL levels, and the large number of pressure frequencies, because it is not
experienced for the same case but with a linearized resistance. Further work is needed to examine

the behavior of the nonlinear resistance algorithm.
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7. Recommendations for Further Research

A more efficient finite difference integration algorithm is needed both to improve accuracy

and reduce computation time. The objective of the development of this program, to obtain an

operational computation under the simplest of analytical conditions, has been met, but this

upgrade is needed to improve the utility of the program. Numerous improved algorithms are

available, and one that should receive strong consideration is the dispersion-relation-preserving
finite difference scheme of Tam 17'1s.

The validity of the algorithm for the nonlinear impedance effects needs to be checked

further, particularly for multiple-frequency cases. Possibly an improved finite difference algorithm

may improve the nonlinear iteration, as well. This effort is necessary before the program can be

used to examine effects of pressure frequency spectra shape.

Rather than expand the pressure Fourier series at each numerical integration time point, it

may be possible to use Inverse Fast Fourier Transform techniques to generate the pressure time

history for a complete data acquisition block. If this is possible with sufficient accuracy, this

would speed the computation significantly.

The development and incorporation of more advanced resistance and mass reactance

models for incorporation into the model is needed. In particular, the Reynold's number

dependence of the orifice discharge coefficient and the velocity dependence (nonlinearity) of the

mass reactance could be incorporated.
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8. Nomenclature

A

B

C

Ca

C1 - C6

d

D

D! - D5

h

i

J
k

L

m

M

N

Nbtk

NFP

Nsamp

P
PFn

Pfwd

Pf_d

R

RL
R_
SPL

t

Tt

Tr_e

U

Urms

V

Vi

V.

X

xn
Zn

linear DC flow resistance coefficient

nonlinear DC flow resistance coefficient

speed of sound

orifice discharge coefficient

numerical integration difference equation coefficients

perforate hole diameter

effective acoustic damping per unit area of faceplate

numerical integration difference equation coefficients

highest frequency present in pressure excitation spectrum

numerical integration time step

square root of-1 or integer index

integer index
wave number

effective orifice length

cavity depth
mass reactance coefficient

effective acoustic mass per unit area offaceplate

number of spatial grid points in cavity

block size for data acquisition

number of non-zero pressure frequencies

number of frequency bins in frequency spectrum

number of points per shortest wavelength in x-grid

number of numerical integration time intervals between each data sample

acoustic pressure

spectral component of applied pressure at n _ frequency

forward-traveling incident pressure wave amplitude

forward-traveling part of incident pressure wave

resistance coefficient

linear part of facesheet damping

nonlinear part of facesheet damping

Sound Pressure Level, dB, re: 0.0002 dynes/cm 2

Facesheet thickness, also time

interim variable for nonlinear numerical integration iteration

data block record time length

incident flow velocity for DC flow resistance measurement

rms value of acoustic velocity

acoustic particle velocity

acoustic velocity in the ita frequency band

n_ spectral component of acoustic velocity

spatial variable along cavity

nta spectral component of acoustic displacement

nth spectral component of acoustic impedance
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E

Af

At

Ax

V

O

"C

normalized acoustic admittance

mass reactance end correction coefficient

Fourier analysis frequency resolution, bin size

grid time step size

grid spatial step size

wavelength

absolute viscosity

kinematic viscosity, IMp

medium density

perforate open area ratio, or porosity

numerical integration time step parameter, = ct

circular frequency

acoustic particle displacement

interim variable for nonlinear numerical integration iteration

interim variable for nonlinear numerical integration iteration
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